Unfolding feasible arithmetic and weak truth

نویسندگان

  • Sebastian Eberhard
  • Thomas Strahm
چکیده

In this paper we continue Feferman’s unfolding program initiated in [11] which uses the concept of the unfolding U(S) of a schematic system S in order to describe those operations, predicates and principles concerning them, which are implicit in the acceptance of S. The program has been carried through for a schematic system of non-finitist arithmetic NFA in Feferman and Strahm [13] and for a system FA (with and without Bar rule) in Feferman and Strahm [14]. The present contribution elucidates the concept of unfolding for a basic schematic system FEA of feasible arithmetic. Apart from the operational unfolding U0(FEA) of FEA, we study two full unfolding notions, namely the predicate unfolding U(FEA) and a more general truth unfolding UT(FEA) of FEA, the latter making use of a truth predicate added to the language of the operational unfolding. The main results obtained are that the provably convergent functions on binary words for all three unfolding systems are precisely those being computable in polynomial time. The upper bound computations make essential use of a specific theory of truth TPT over combinatory logic, which has recently been introduced in Eberhard and Strahm [7] and Eberhard [6] and whose involved proof-theoretic analysis is due to Eberhard [6]. The results of this paper were first announced in [8]. ∗Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrückstrasse 10, CH-3012 Bern, Switzerland. Email: [email protected]. Research supported by the Swiss National Science Foundation. ∗∗Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrückstrasse 10, CH-3012 Bern, Switzerland. Email: [email protected]. Homepage: http://www.iam.unibe.ch/~strahm

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak theories of truth and explicit mathematics

We study weak theories of truth over combinatory logic and their relationship to weak systems of explicit mathematics. In particular, we consider two truth theories TPR and TPT of primitive recursive and feasible strength. The latter theory is a novel abstract truth-theoretic setting which is able to interpret expressive feasible subsystems of explicit mathematics.

متن کامل

The Friedman - Sheard programme in intuitionistic logic

This paper compares the roles classical and intuitionistic logic play in restricting the free use of truth principles in arithmetic. We consider fifteen of the most commonly used axiomatic principles of truth and classify every subset of them as either consistent or inconsistent over a weak purely intuitionistic theory of truth.

متن کامل

A feasible theory of truth over combinatory algebra

We define an applicative theory of truth TPT which proves totality exactly for the polynomial time computable functions. TPT has natural and simple axioms since nearly all its truth axioms are standard for truth theories over an applicative framework. The only exception is the axiom dealing with the word predicate. The truth predicate can only reflect elementhood in the words for terms that hav...

متن کامل

The Logical Strength of Compositional Principles

Some years ago, Shapiro (1998) and Ketland (1999) independently developed what is now known as the ‘conservativeness argument’ against deflationary views of truth. Attempting to understand in what sense a deflationary truth-predicate is ‘insubstantial’, they proposed that the principles concerning truth that a deflationist accepts should conservatively extend whatever non-semantic theories the ...

متن کامل

Conservativity for theories of compositional truth via cut elimination

We present a cut elimination argument that witnesses the conservativity of the compositional axioms for truth (without the extended induction axiom) over any theory interpreting a weak subsystem of arithmetic. In doing so we also fix a critical error in Halbach’s original presentation. Our methods show that the admission of these axioms determines a hyper-exponential reduction in the size of de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012